• 帮助
  • 广告服务

京财时报

滚动新闻:
·中国广电5G用户突破1800万 ·包含本体及DLC、原声带等特典:消息称《地平线:西之绝境》游戏完全版有望 ·理财直播“连麦诊基”基金投教转向“基民视角” ·最新佛山百强榜:民营企业占比超八成,制造业百强营收连续三年增长 ·汇聚金融力量共创美好生活天津滨海农商银行开展“五进入”消保集中宣教活动 ·长四丙火箭成功发射遥感三十三号04星 ·对比不同理财产品的业绩?这个指标你一定要搞懂 ·专利显示苹果公司未来有望利用电磁线圈“循环热量”,帮助冷却过热的设备 ·全球商品观察|国际大米价格指数达15年来名义高点,中国大米市场受国际影响 ·本田展示未来电动汽车愿景,三款概念车将亮相东京车展 ·微软全新OutlookforWindows支持苹果iCloud帐户,离线 ·安徽宿州:鼓励“现房销售”,年底前买房发放至少5000元/套消费券 ·昆仑健康保险广东分公司走进养老院及社区公园,开展金融知识普及集中宣传活动 ·21深度|蔚来手机发布:车手互联兵临城下 ·年轻人首台阅读本:掌阅iReaderLight3发布,6英寸墨水屏、AI ·走进江南古街、传播金融知识浦发银行无锡分行积极开展”集中教育宣传日“活动 ·微软Win11彩蛋:下次Moment更新有望明年2月24日发布 ·阿里云宣布开源通义千问140亿参数模型Qwen-14B及其对话模型,免费 ·廿载著章丨国寿寿险上市20年:资产规模劲增15倍,高质量发展稳健迈进 ·15.69万元起,2024款小鹏P5汽车正式上市:精简至两款,车长增加5 

300美元平替ChatGPT,斯坦福130亿参数「小羊驼」诞生

京财时报   来源:IT之家    发布时间:2023-04-17 14:50:58   阅读量:17833   

继草泥马后,斯坦福联手 CMU、UC 伯克利等机构的学者再次发布了 130 亿参数模型骆马(Vicuna),仅需 300 美元就能实现 ChatGPT 90% 的性能。

继 Meta 的 LLaMA 模型开源后,AI 界研究人员就在这个模型基础上衍生出许多版本。

前段时间,斯坦福发布了 Alpaca,是由 Meta 的 LLaMA 7B 微调而来,仅用了 52k 数据,性能可以与 GPT-3.5 匹敌。

今天,斯坦福学者联手 CMU、UC 伯克利等,再次推出一个全新模型 ——130 亿参数的 Vicuna,俗称「小羊驼」。

Vicuna 是通过在 ShareGPT 收集的用户共享对话上对 LLaMA 进行微调训练而来,训练成本近 300 美元。

研究人员设计了 8 个问题类别,包括数学、写作、编码,对 Vicuna-13B 与其他四个模型进行了性能测试。

测试过程使用 GPT-4 作为评判标准,结果显示 Vicuna-13B 在超过 90% 的情况下实现了与 ChatGPT 和 Bard 相匹敌的能力。

同时,在在超过 90% 的情况下胜过了其他模型,如 LLaMA 和斯坦福的 Alpaca。

团队成员来自加州大学伯克利分校、卡内基梅隆大学、斯坦福大学、加州大学圣地亚哥分校和穆罕默德?本?扎耶德人工智能大学。

90% 匹敌 ChatGPT

研究人员让斯坦福的 Alpaca 和 Vicuna 来了一轮大比拼,分别对基准问题回答进行了演示。

在使用 70K 用户共享的 ChatGPT 对话数据对 Vicuna 进行微调后,研究发现 Vicuna 能够生成比 Alpaca 更详细、结构更合理的答案。

问:写一篇关于最近去夏威夷旅行的有趣的旅游博客文章,强调文化体验和必看景点。

Alpaca 的回答可以说是一个浓缩版,短短几行就写完了,没有按照要求完成任务。它仅是提到了自己写了一篇博客,并对博客内容做了一个概述。

再来看 Vicuna,撰写了一篇详细且引人入胜的旅行博客文章,不仅内容有趣,还详细地介绍了夏威夷的文化体验和必看景点。

由此,让 GPT-4 给打分,Alpaca7 分,Vicuna 满分。

那么和 ChatGPT 对打,Vicuna 的表现又如何呢?

两者双双得了 9 分!

可以看到,这两个模型提供一次夏威夷之旅的文章不仅引人入胜,而且文笔流畅。

另外,两个回答中的详细程度和准确性都很出色,而且两个模型都有效地传达了夏威夷之旅的兴奋和美丽。

此外,研究人员还将 Vicuna 与 LLaMA,以及谷歌的 Bard 模型进行了测试,测试结果显示,LLaMA 表现最差,几乎没有回应。

Bard 回答的准确性和相关性也是比较高,有 9 分的成绩,但是在更具吸引力回答方面,略低于 Vicuna。

除了写作,研究人员在编码、数学、角色扮演、常识等方面分别对 Vicuna 模型与其他四个模型的能力进行了对比,总共 80 道题。

最后,研究人员基于 GPT-4 的初步评估总结如图所示。可以看到,Vicuna 达到了 Bard / ChatGPT 的 90% 以上的能力。

由 GPT-4 评估的相对响应质量

有趣的是,在这次 Vicuna 的 demo 中,团队还加入了 Alpaca 和 LLaMA 的试用,而前者刚被关闭不久。

模型介绍

ChatGPT 横空出世让人兴奋不已,但 OpenAI 不 Open 的事实让圈内人实在懊恼。

恰恰,Meta 的 LLaMA 模型开源,为许多研究人员动手研发自己的模型提供了选择。

Vicuna-13B 诞生正是受到 LLaMA 和斯坦福 Alpaca 项目的启发。这是一个基于增强数据集和易于使用、可扩展的基础设施的开源聊天机器人。

该模型的训练数据来自于 ShareGPT 收集的用户分享的对话,然后研究人员通过对 LLaMA 基本模型进行微调,Vicuna-13B 就诞生了。

Vicuna-13B 展示了与其他开源模型相媲美的性能。

研究人员对 Vicuna-13B 的性能进行了初步评估,并描述了其训练和服务基础设施。

同时,这一模型演示 demo 已经上线,所有研究人员都能参与在线演示互动,以测试这个聊天机器人的能力。

工作流程概述

对于 Vicuna-13B 训练流程,具体如下:

首先,研究人员从 ChatGPT 对话分享网站 ShareGPT 上,收集了大约 70K 对话。

接下来,研究人员优化了 Alpaca 提供的训练脚本,使模型能够更好地处理多轮对话和长序列。之后利用 PyTorch FSDP 在 8 个 A100 GPU 上进行了一天的训练。

在模型的质量评估方面,研究人员创建了 80 个不同的问题,并用 GPT-4 对模型输出进行了评价。

为了比较不同的模型,研究人员将每个模型的输出组合成一个单独的提示,然后让 GPT-4 评估哪个模型给出的回答更好。

LLaMA、Alpaca、Vicuna 和 ChatGPT 的对比

训练

Vicuna 是通过使用来自 ShareGPT 公共 API 收集的约 70K 用户分享对话数据微调创建的。

为了确保数据质量,研究人员将 HTML 转换回 markdown,并过滤掉一些不适当或质量较低的样本。

另外,研究人员将较长的对话划分为较小的片段,以适应模型的最大上下文长度。

Vicuna 的训练方法建立在斯坦福的 Alpaca 基础上,并进行了以下改进:

内存优化:

为了使 Vicuna 能够理解长上下文,将最大上下文长度从 Alpaca 的 512 扩展到 2048,这大大增加了 GPU 内存需求。在此,研究人员通过使用梯度检查点和闪存注意力来解决内存压力。

多轮对话:

通过调整训练损失以考虑多轮对话,并仅在聊天机器人的输出上计算微调损失。

通过 Spot 实例降低成本:

40 倍的数据集和 4 倍的序列长度对训练带来了相当大的挑战。研究人员采用 SkyPilot 托管的 Spot 实例来降低成本,通过利用自动恢复抢占与自动区域切换进而减少成本。

这种解决方案将 7B 模型的训练成本从 500 美元降低到约 140 美元,将 13B 模型的训练成本从约 1000 美元降低到 300 美元。

评估

评估 AI 聊天机器人是一项具有挑战性的任务,因为它需要检查语言理解、推理和上下文意识。随着 AI 聊天机器人变得越来越先进,现有的开放基准可能不再足够。

例如,斯坦福 Alpaca 中使用的评估数据集 self-instruct,可以被 SOTA 聊天机器人有效地回答,这使得人类难以分辨性能差异。更多的限制包括训练 / 测试数据污染和创建新基准的潜在高成本。

为了解决这些问题,研究人员提出了一个基于 GPT-4 的评估框架,从而实现对聊天机器人性能的自动评估。

首先,通过精心设计的提示,让 GPT-4 能够生成多样化且具有挑战性的问题。并利用 8 个不同类别共 80 道题,如角色扮演、编码 / 数学任务等,来测试这些模型在不同领域上表现出的性能。

然后,研究人员要求 GPT-4 根据帮助程度、相关性、准确性和细节对答案的质量进行评分。结果显示,GPT-4 不仅可以产生相对一致的分数,还可以提供详细的解释来说明为什么给出这样的分数。但是,GPT-4 并不擅长评判编码 / 数学任务。

由 GPT-4 评估的响应比较

GPT-4 在超过 90% 的问题中更喜欢 Vicuna,而不是现有的 SOTA 开源模型。

在 45% 的问题中,GPT-4 认为 Vicuna 的回答和 ChatGPT 差不多甚至更好。

综合来看,Vicuna 在总分上达到 ChatGPT 的 92%。

局限

研究人员指出,与其他大语言模型类似,Vicuna 也存在着一定的局限性。

比如,Vicuna 在涉及编程、推理、数学以及事实准确性的任务上表现不佳。

此外,它也没有经过充分优化以保证安全性或减轻潜在的毒性或偏见。

为解决安全方面的问题,研究人员在 demo 中采用了 OpenAI 的审查 API 来过滤掉不适当的用户输入。

剩下的名字不多了

现在,除了美洲驼,羊驼(Alpaca),驼马(Vicuna)都安排上了。

研究人员要赶快冲,因为留给你们的名字不多了。

参考资料:

声明:本网转发此文章,旨在为读者提供更多信息资讯,所涉内容不构成投资、消费建议。文章事实如有疑问,请与有关方核实,文章观点非本网观点,仅供读者参考。

热文推荐

首页 | 新闻| 财经| 房产| 娱乐| 旅游| 时尚| 生活| 科技| 健康| 汽车| 教育| 今日北京 | 电子报

Copyright @ 2010- 网站地图
关于同意京财时报设立互联网站并提供新闻信息服务的批复